
Runtimes for Concurrency and
Distribution

Gabriel Rovesti

Academic Year 2024-2025

April 20, 2025

Contents

1 The Notion of Run-time Support 6
1.1 Introduction to Programming Abstractions . 6
1.2 Procedures as Abstractions . 6
1.3 The Abstraction Gap . 6
1.4 Levels of Abstraction . 6
1.5 Key Concepts . 7

2 Multiprogramming 8
2.1 The Run-time Environment . 8
2.2 Components of the Run-time Environment . 8

2.2.1 Operating System . 8
2.2.2 Language-Specific Run-time Support . 8

2.3 The Program Abstraction . 9
2.4 Multiprogramming Implementation . 9

2.4.1 Process Management . 9
2.4.2 Memory Management . 9
2.4.3 Resource Management . 9

2.5 Key Insights . 10

3 Virtualization 11
3.1 Introduction to Virtualization . 11
3.2 From Abstraction to Virtualization . 11
3.3 Types of Virtualization . 11

3.3.1 Platform Virtualization . 11
3.3.2 Resource Virtualization . 11

3.4 Hypervisors/Virtual Machine Monitors . 11
3.5 Benefits of Virtualization . 12
3.6 Virtualization Techniques . 12

3.6.1 Trap-and-Emulate . 12
3.6.2 Binary Translation . 12

3.7 Challenges in Virtualization . 12
3.8 Virtualization in Modern Platforms . 12

4 Distribution and Scalability 13
4.1 Introduction to Distribution . 13
4.2 Relationship Between Concurrency and Distribution 13
4.3 Fundamental Concepts of Distribution . 13

4.3.1 Distributed System Definition . 13
4.3.2 Key Characteristics . 13

4.4 Scalability in Distributed Systems . 13
4.4.1 Dimensions of Scalability . 14

1

RUNTIMES FOR CONCURRENCY AND DISTRIBUTION 2024-2025

4.4.2 Scalability Challenges . 14
4.5 Distribution Models . 14

4.5.1 Client-Server Model . 14
4.5.2 Peer-to-Peer Model . 14
4.5.3 Hybrid Models . 14

4.6 Runtime Support for Distribution . 14
4.7 Key Insights . 15

5 Models of Concurrency 16
5.1 Design Challenges for Concurrency Models . 16
5.2 The Language Designer’s Perspective . 16

5.2.1 Units of Concurrent Execution . 16
5.2.2 Syntactic Representation . 16
5.2.3 Execution Model . 17

5.3 Shared Memory vs. Message Passing . 17
5.3.1 Shared Memory Model . 17
5.3.2 Message Passing Model . 17

5.4 Specific Language Approaches to Concurrency . 17
5.4.1 Java’s Concurrency Model . 17
5.4.2 Go’s Concurrency Model . 17
5.4.3 Ada’s Concurrency Model . 18
5.4.4 Erlang’s Concurrency Model . 18

5.5 Evaluating Concurrency Models . 18
5.6 Key Insights . 18

6 Communication Among Threads 19
6.1 The Necessity of Communication . 19
6.2 Challenges in Inter-Thread Communication . 19
6.3 Communication Models . 19

6.3.1 Shared Memory Communication . 19
6.3.2 Message-Based Communication . 20

6.4 Synchronization Primitives . 20
6.4.1 Mutual Exclusion (Mutex) . 20
6.4.2 Semaphores . 20
6.4.3 Condition Variables . 20
6.4.4 Barriers . 20

6.5 Communication Patterns . 20
6.5.1 Producer-Consumer . 20
6.5.2 Readers-Writers . 21
6.5.3 Dining Philosophers . 21

6.6 Communication and Distribution . 21
6.7 Key Insights . 21

7 Synchronous Communication 22
7.1 Characteristics of Synchronous Communication 22
7.2 Synchronous Communication Mechanisms . 22

7.2.1 Rendezvous . 22
7.2.2 Synchronous Message Passing . 22
7.2.3 Remote Procedure Call (RPC) . 22

7.3 Implementing Synchronous Communication . 23
7.4 Synchronous Communication in Programming Languages 23

7.4.1 Ada’s Rendezvous Mechanism . 23

2

RUNTIMES FOR CONCURRENCY AND DISTRIBUTION 2024-2025

7.4.2 Go’s Channel-Based Communication . 23
7.5 Advantages of Synchronous Communication . 24
7.6 Limitations of Synchronous Communication . 24
7.7 Synchronous Communication in Distributed Systems 24
7.8 Key Insights . 24

8 Asynchronous Communication (The Monitor) 25
8.1 Introduction to Asynchronous Communication 25
8.2 The Monitor Concept . 25

8.2.1 Key Components of Monitors . 25
8.3 Monitor Implementation . 25

8.3.1 Basic Structure . 25
8.3.2 Condition Variables . 26

8.4 Monitor Variations . 26
8.4.1 Hoare Monitors . 26
8.4.2 Mesa Monitors . 26

8.5 Ada’s Protected Objects . 27
8.6 Monitors vs. Other Synchronization Mechanisms 27
8.7 Asynchronous Benefits and Challenges . 27

8.7.1 Benefits . 27
8.7.2 Challenges . 28

8.8 Key Insights . 28

9 The Multiple Facets of Synchronization 29
9.1 Dimensions of Synchronization . 29

9.1.1 Purpose of Synchronization . 29
9.1.2 Mechanism Characteristics . 29

9.2 Ada’s Protected Objects: A Comprehensive Approach 29
9.2.1 Key Capabilities . 29
9.2.2 Protected Object Types . 30

9.3 Advanced Synchronization Patterns . 30
9.3.1 Read-Write Locks . 30
9.3.2 Priority Inheritance . 30
9.3.3 Non-Blocking Synchronization . 30

9.4 Synchronization Problems and Solutions . 30
9.4.1 Deadlock . 30
9.4.2 Starvation . 30
9.4.3 Priority Inversion . 31

9.5 Case Study: The Mars Pathfinder Incident . 31
9.6 Synchronization in Distributed Contexts . 31
9.7 Key Insights . 31

10 Back to Distribution 32
10.1 Revisiting Distribution Fundamentals . 32
10.2 The Role of Runtimes in Distributed Systems . 32
10.3 Distributed System Architecture . 32

10.3.1 Logical Architecture . 32
10.3.2 Physical Architecture . 32

10.4 Distribution Transparency . 33
10.5 Challenges in Distributed Systems . 33

10.5.1 The CAP Theorem . 33
10.5.2 The FLP Impossibility Result . 33

3

RUNTIMES FOR CONCURRENCY AND DISTRIBUTION 2024-2025

10.5.3 Other Challenges . 33
10.6 Distributed Runtime Components . 34

10.6.1 Communication Middleware . 34
10.6.2 Service Discovery . 34
10.6.3 Orchestration and Management . 34

10.7 Key Insights . 34

11 Distributed Inter-Process Communication 35
11.1 The Challenge of Remote Communication . 35
11.2 Network Protocol Fundamentals . 35

11.2.1 Protocol Layers . 35
11.2.2 Connection-Oriented vs. Connectionless 35

11.3 Remote Procedure Call (RPC) . 35
11.3.1 RPC Concept . 35
11.3.2 RPC Components . 36
11.3.3 RPC Operation . 36
11.3.4 RPC Challenges . 36

11.4 Message-Oriented Middleware (MOM) . 36
11.4.1 Characteristics . 36
11.4.2 MOM Components . 36
11.4.3 Delivery Semantics . 37

11.5 Web Services and RESTful Communication . 37
11.5.1 Web Services . 37
11.5.2 REST (Representational State Transfer) 37

11.6 Emerging Communication Patterns . 37
11.6.1 GraphQL . 37
11.6.2 gRPC . 37
11.6.3 WebSockets . 37

11.7 Serialization and Data Formats . 38
11.7.1 Data Serialization . 38
11.7.2 Common Data Formats . 38

11.8 Key Insights . 38

12 Distributed Concurrency 39
12.1 The Convergence of Distribution and Concurrency 39
12.2 Server-Side Scalability . 39

12.2.1 Scalability Dimensions . 39
12.2.2 Server Architectures for Scalability . 39

12.3 Concurrency Control in Distributed Systems . 40
12.3.1 Optimistic Concurrency Control . 40
12.3.2 Pessimistic Concurrency Control . 40
12.3.3 Distributed Transactions . 40

12.4 Balancing Scalability and Consistency . 41
12.4.1 Consistency Models . 41
12.4.2 Consistency vs. Performance Trade-offs 41

12.5 Distributed Concurrency Patterns . 41
12.5.1 Sharding/Partitioning . 41
12.5.2 Command Query Responsibility Segregation (CQRS) 41
12.5.3 Event Sourcing . 41

12.6 Distributed Concurrency Technologies . 42
12.6.1 Actor Model . 42
12.6.2 Conflict-Free Replicated Data Types (CRDTs) 42

4

RUNTIMES FOR CONCURRENCY AND DISTRIBUTION 2024-2025

12.7 Key Insights . 42

13 Distributed Synchronization 43
13.1 The Challenge of Distributed Agreement . 43
13.2 Clock Synchronization . 43

13.2.1 Physical Clock Synchronization . 43
13.2.2 Logical Clocks . 43

13.3 Distributed Consensus . 44
13.3.1 The Consensus Problem . 44
13.3.2 Consensus Algorithms . 44

13.4 State Machine Replication . 44
13.5 Distributed Mutual Exclusion . 45

13.5.1 Token-Based Algorithms . 45
13.5.2 Permission-Based Algorithms . 45
13.5.3 Quorum-Based Algorithms . 45

13.6 Distributed Deadlock Detection . 45
13.6.1 Centralized Detection . 45
13.6.2 Distributed Detection . 45

13.7 Distributed Termination Detection . 45
13.8 Leader Election . 46
13.9 Key Insights . 46

14 Enter the Cloud 47
14.1 The Evolution of Cloud Computing . 47

14.1.1 Historical Context . 47
14.1.2 Visionaries and Early Adopters . 47

14.2 Cloud Computing Characteristics . 47
14.2.1 Essential Characteristics (NIST Definition) 47
14.2.2 Service Models . 48
14.2.3 Deployment Models . 48

14.3 Cloud Infrastructure Architecture . 48
14.3.1 Compute Virtualization . 48
14.3.2 Storage Systems . 48
14.3.3 Networking . 48

14.4 Cloud Design Patterns . 49
14.4.1 Scalability Patterns . 49
14.4.2 Resilience Patterns . 49
14.4.3 Data Management Patterns . 49

14.5 Cloud-Native Application Architecture . 49
14.5.1 Microservices . 49
14.5.2 Containers and Orchestration . 49
14.5.3 DevOps and Continuous Delivery . 50

14.6 Challenges in Cloud Computing . 50
14.6.1 Technical Challenges . 50
14.6.2 Business Challenges . 50

14.7 Future Trends . 50
14.8 Key Insights . 50

5

Chapter 1

The Notion of Run-time Support

1.1 Introduction to Programming Abstractions

Programming languages provide abstractions that simplify the development process, allowing
programmers to express complex operations through high-level constructs rather than low-level
machine instructions. These abstractions are fundamental to modern software development
but require mechanisms to bridge the gap between the programming model and the underlying
hardware.

1.2 Procedures as Abstractions

The concept of a procedure (or function) is a fundamental abstraction present in virtually all
modern programming languages. However, processors do not natively support this abstraction:

• Procedures allow code to be organized into reusable units

• They enable parameter passing and return values

• They support local variables with limited scope

• They implement control flow mechanisms (call and return)

1.3 The Abstraction Gap

There exists a fundamental gap between:

• What programming languages offer as ”native” features

• What processors directly support in hardware

This gap must be filled by software that executes on the processor, underneath the program
itself. This software operates at a lower level of abstraction than the program but higher than
the bare processor.

1.4 Levels of Abstraction

The execution environment can be understood as a series of abstraction layers:

1. Application program (highest)

2. Programming language abstractions

6

RUNTIMES FOR CONCURRENCY AND DISTRIBUTION 2024-2025

3. Run-time support for these abstractions

4. Operating system services

5. Hardware capabilities (lowest)

1.5 Key Concepts

Key Concepts

• Programming abstraction: High-level constructs that simplify programming
but require translation for execution

• Abstraction gap: The difference between what programming languages offer and
what processors directly support

• Run-time support: Software mechanisms that implement language abstractions
on top of processor capabilities

7

Chapter 2

Multiprogramming

2.1 The Run-time Environment

Building on the previous chapter, we can now formally define the machinery that sits between
program execution and the processor:

Definition

The run-time environment is the set of software mechanisms that enable program exe-
cution by implementing abstractions not directly supported by the underlying hardware.

2.2 Components of the Run-time Environment

The run-time environment consists of two complementary parts:

2.2.1 Operating System

The operating system’s primary purpose is to:

• Allow simultaneous execution of multiple programs

• Ensure isolation between programs (preventing interference)

• Manage shared resources (processor time, memory, I/O)

• Provide abstractions like processes, files, and I/O channels

2.2.2 Language-Specific Run-time Support

Each programming language may require specific abstractions that are not provided by the
operating system:

• Memory management (e.g., garbage collection in Java or C#)

• Thread management (for languages with built-in concurrency)

• Exception handling mechanisms

• Support for object-oriented features (inheritance, polymorphism)

8

RUNTIMES FOR CONCURRENCY AND DISTRIBUTION 2024-2025

2.3 The Program Abstraction

A central abstraction implemented by the operating system is the notion of a ”program” itself:

• Programs are represented as processes with their own:

– Address space (virtual memory)

– Execution context (registers, stack, program counter)

– Resource allocations (files, sockets, etc.)

• The operating system creates the illusion that each program runs in isolation

• In reality, the processor is shared among multiple programs through context switching

2.4 Multiprogramming Implementation

The implementation of multiprogramming involves several key mechanisms:

2.4.1 Process Management

• Process creation and termination

• Process scheduling algorithms

• Process state transitions (ready, running, blocked)

• Context switching between processes

2.4.2 Memory Management

• Virtual memory implementation

• Address translation (virtual to physical)

• Memory protection between processes

• Memory allocation and deallocation

2.4.3 Resource Management

• Allocation of processor time

• Management of I/O devices

• File system implementation

• Communication channels

9

RUNTIMES FOR CONCURRENCY AND DISTRIBUTION 2024-2025

2.5 Key Insights

Key Insights

• The run-time environment bridges the gap between programming abstractions and
hardware capabilities

• Multiprogramming creates the illusion of simultaneous program execution on se-
quential hardware

• Isolation between programs is a fundamental requirement for reliable computing

• The operating system implements the basic abstraction of a ”program” as a process

10

Chapter 3

Virtualization

3.1 Introduction to Virtualization

Virtualization represents an extension of the abstraction concept discussed in previous chap-
ters. It allows for creating multiple virtual instances of execution platforms (such as operating
systems) on a single physical machine.

3.2 From Abstraction to Virtualization

• Abstraction hides implementation details, presenting a simplified interface

• Virtualization creates complete simulated environments that behave like real systems

• Virtualization creates the illusion of dedicated hardware resources

3.3 Types of Virtualization

3.3.1 Platform Virtualization

• Full virtualization: Complete simulation of hardware to run unmodified operating sys-
tems

• Paravirtualization: Operating system is aware of virtualization and cooperates

• Hardware-assisted virtualization: CPU features that aid virtualization (e.g., Intel
VT-x, AMD-V)

3.3.2 Resource Virtualization

• Memory virtualization: Virtual memory space for each virtual machine

• I/O virtualization: Access to virtualized devices

• Network virtualization: Virtual network interfaces and connections

3.4 Hypervisors/Virtual Machine Monitors

The hypervisor is the key component that enables virtualization:

• Type 1 (bare-metal): Runs directly on hardware (e.g., VMware ESXi, Xen)

• Type 2 (hosted): Runs as an application on a host OS (e.g., VirtualBox, VMware
Workstation)

11

RUNTIMES FOR CONCURRENCY AND DISTRIBUTION 2024-2025

3.5 Benefits of Virtualization

• Consolidation: Running multiple virtual machines on a single physical server

• Isolation: Containing failures within virtual machine boundaries

• Flexibility: Easy creation, migration, and management of virtual machines

• Resource utilization: Efficient use of computing resources

3.6 Virtualization Techniques

3.6.1 Trap-and-Emulate

• VM executes non-privileged instructions directly

• Privileged instructions trigger traps to the hypervisor

• Hypervisor emulates the behavior of privileged instructions

3.6.2 Binary Translation

• Translates privileged instructions on-the-fly

• Translated code executes safely without requiring traps

• Translation results can be cached for performance

3.7 Challenges in Virtualization

• Performance overhead: Virtualization introduces execution overhead

• Resource contention: Multiple VMs competing for physical resources

• I/O virtualization: Efficiently handling device access

• Memory management: Balancing memory allocation among VMs

3.8 Virtualization in Modern Platforms

Key Insights

• Virtualization is now commonplace in modern execution platforms

• It forms the foundation of cloud computing infrastructure

• Containers represent a lightweight form of virtualization

• Modern processors include hardware features specifically designed to support vir-
tualization

12

Chapter 4

Distribution and Scalability

4.1 Introduction to Distribution

Distribution extends the concept of concurrent execution beyond the boundaries of a single
computer system, allowing components to operate across multiple networked nodes while main-
taining a coherent system behavior.

4.2 Relationship Between Concurrency and Distribution

It’s essential to understand the deep connection between concurrency and distribution:

• Distribution inherently requires concurrency (multiple components executing simultane-
ously)

• Concurrency serves as a foundational building block for distributed systems

• Distribution amplifies concurrency challenges and introduces new ones

4.3 Fundamental Concepts of Distribution

4.3.1 Distributed System Definition

Definition

A distributed system is a collection of independent computers that appears to its users
as a single coherent system.

4.3.2 Key Characteristics

• Multiple autonomous components: Independent nodes with their own processors and
memory

• Communication via message passing: No shared memory between nodes

• Lack of global clock: Challenging to establish a universal time reference

• Independent failures: Components can fail independently

4.4 Scalability in Distributed Systems

Scalability refers to a system’s ability to handle growing amounts of work or to be enlarged to
accommodate that growth.

13

RUNTIMES FOR CONCURRENCY AND DISTRIBUTION 2024-2025

4.4.1 Dimensions of Scalability

• Size scalability: Adding more users and resources

• Geographic scalability: Users and resources distributed over wider areas

• Administrative scalability: Manageable even with many independent administrative
organizations

4.4.2 Scalability Challenges

• Performance: Maintaining acceptable performance as system grows

• Availability: Ensuring system remains available despite component failures

• Consistency: Maintaining data consistency across distributed components

4.5 Distribution Models

4.5.1 Client-Server Model

• Separation of responsibilities between service providers (servers) and consumers (clients)

• Centralized management but potential bottlenecks and single points of failure

4.5.2 Peer-to-Peer Model

• Nodes act as both clients and servers

• No central coordination, enhancing robustness and scalability

• Challenges in consistency and security

4.5.3 Hybrid Models

• Combining aspects of client-server and peer-to-peer

• Examples include hierarchical systems and edge computing

4.6 Runtime Support for Distribution

• Networking infrastructure: Protocols, addressing, routing

• Remote communication mechanisms: Remote procedure calls, message queues

• Service discovery: Finding and connecting to services in the network

• Failure detection and recovery: Identifying and handling node failures

14

RUNTIMES FOR CONCURRENCY AND DISTRIBUTION 2024-2025

4.7 Key Insights

Key Insights

• Distribution and concurrency are deeply intertwined concepts

• Distributed systems introduce challenges beyond those of concurrent systems

• Scalability requires careful design considerations at multiple levels

• Distribution requires specialized runtime support mechanisms

15

Chapter 5

Models of Concurrency

5.1 Design Challenges for Concurrency Models

Creating a model of concurrent execution for a programming language presents unique chal-
lenges:

• Designing concurrent abstractions that run on inherently sequential processors

• Providing clear semantics and syntax for programmers

• Balancing expressiveness with safety and performance

• Ensuring predictable and understandable behavior

5.2 The Language Designer’s Perspective

When designing concurrency features for a programming language, several fundamental deci-
sions must be made:

5.2.1 Units of Concurrent Execution

• Threads: Lightweight sequential execution streams sharing memory

• Processes: Independent execution units with separate address spaces

• Tasks: Higher-level abstraction often implemented on top of threads

• Actors: Independent entities communicating via message passing

5.2.2 Syntactic Representation

How concurrency is expressed in the language:

• Explicit thread creation (e.g., new Thread() in Java)

• Language keywords (e.g., async/await, go in Go)

• Library functions vs. built-in language constructs

• Declaration-based approaches (e.g., Ada tasks)

16

RUNTIMES FOR CONCURRENCY AND DISTRIBUTION 2024-2025

5.2.3 Execution Model

Rules governing concurrent execution:

• Preemptive vs. cooperative scheduling

• Deterministic vs. non-deterministic execution

• Fair vs. priority-based scheduling

• Execution order guarantees (or lack thereof)

5.3 Shared Memory vs. Message Passing

Two fundamental paradigms for concurrency:

5.3.1 Shared Memory Model

• Concurrent threads access the same memory locations

• Requires synchronization mechanisms to prevent race conditions

• Examples: Java threads, POSIX threads, C# threads

• Challenges: data races, deadlocks, atomicity violations

5.3.2 Message Passing Model

• Concurrent entities communicate by explicit message exchange

• No shared state between concurrent entities

• Examples: Erlang processes, Go channels, actor model

• Challenges: message ordering, delivery guarantees, performance

5.4 Specific Language Approaches to Concurrency

5.4.1 Java’s Concurrency Model

• Thread-based concurrency with shared memory

• Built-in synchronization primitives (synchronized, wait/notify)

• Java Concurrency Utilities (since Java 5) with higher-level abstractions

• Executor framework for thread pool management

5.4.2 Go’s Concurrency Model

• Goroutines: lightweight concurrent functions

• Channels for communication between goroutines

• Select statement for multiplexing channel operations

• ”Share memory by communicating, don’t communicate by sharing memory” philosophy

17

RUNTIMES FOR CONCURRENCY AND DISTRIBUTION 2024-2025

5.4.3 Ada’s Concurrency Model

• Built-in task type for concurrent execution

• Rendezvous mechanism for synchronous communication

• Protected objects for safe shared data access

• Strong compile-time checks for concurrency safety

5.4.4 Erlang’s Concurrency Model

• Lightweight processes with no shared state

• Pure message passing for inter-process communication

• ”Let it crash” philosophy with supervision hierarchies

• Designed for fault-tolerant, distributed systems

5.5 Evaluating Concurrency Models

Criteria for assessing concurrency models:

• Safety: Prevention of data races and other concurrency hazards

• Liveness: Ensuring progress and avoiding deadlocks

• Composability: Ability to combine concurrent components

• Scalability: Performance with increasing concurrency

• Understandability: Ease of reasoning about concurrent behavior

5.6 Key Insights

Key Insights

• Language designers must make fundamental choices about concurrency models

• Different languages offer distinct approaches to concurrency based on their design
principles

• The choice of concurrency model has profound implications for program structure
and behavior

• No single concurrency model is optimal for all use cases

18

Chapter 6

Communication Among Threads

6.1 The Necessity of Communication

Concurrent programs are inherently collaborative, requiring mechanisms for threads to:

• Exchange data and results

• Coordinate activities and execution order

• Signal events and state changes

• Share resources safely

6.2 Challenges in Inter-Thread Communication

Enabling communication between threads introduces several complex challenges:

• Race conditions: Non-deterministic behavior due to timing of operations

• Data inconsistency: Partial updates leading to invalid states

• Deadlocks: Circular wait conditions causing system standstill

• Livelocks: Threads continuously change state without progressing

• Priority inversion: Lower-priority threads preventing higher-priority ones from running

6.3 Communication Models

Different approaches to enabling thread communication:

6.3.1 Shared Memory Communication

• Threads access common memory locations for data exchange

• Requires explicit synchronization mechanisms

• Generally offers lower latency for local communication

• Examples: Global variables, heap objects in Java/C++

19

RUNTIMES FOR CONCURRENCY AND DISTRIBUTION 2024-2025

6.3.2 Message-Based Communication

• Threads exchange discrete messages containing data

• Can be implemented with or without shared memory

• Promotes clearer separation of concerns

• Examples: Channels in Go, mailboxes in actor systems

6.4 Synchronization Primitives

Basic building blocks for coordinating thread communication:

6.4.1 Mutual Exclusion (Mutex)

• Ensures only one thread can access a critical section at a time

• Prevents concurrent access to shared resources

• Examples: synchronized in Java, mutex in C++

6.4.2 Semaphores

• Count-based synchronization mechanism

• Can be used for signaling and resource management

• Supports both mutual exclusion and condition synchronization

6.4.3 Condition Variables

• Allow threads to wait for specific conditions to be met

• Used in conjunction with mutual exclusion

• Examples: wait/notify in Java, condition variable in C++

6.4.4 Barriers

• Synchronize multiple threads at specific execution points

• Ensure all threads reach a certain stage before any proceed further

6.5 Communication Patterns

6.5.1 Producer-Consumer

• One or more threads produce data items

• One or more threads consume these items

• Typically implemented using a bounded buffer

• Synchronization ensures buffer integrity and proper signaling

20

RUNTIMES FOR CONCURRENCY AND DISTRIBUTION 2024-2025

6.5.2 Readers-Writers

• Multiple readers can access data simultaneously

• Writers need exclusive access

• Various policies for balancing reader vs. writer priorities

6.5.3 Dining Philosophers

• Classic problem illustrating deadlock and resource allocation

• Demonstrates challenges in concurrent resource acquisition

6.6 Communication and Distribution

The connection between thread communication and distributed systems:

• Local communication models may or may not scale to distributed settings

• Shared memory doesn’t naturally extend to distributed environments

• Message passing aligns well with distributed communication requirements

• Distribution adds latency, reliability, and ordering challenges

6.7 Key Insights

Key Insights

• Communication is essential for meaningful concurrent collaboration

• Thread communication introduces complex synchronization challenges

• Different communication models have distinct strengths and weaknesses

• The choice of communication model affects scalability to distributed settings

21

Chapter 7

Synchronous Communication

7.1 Characteristics of Synchronous Communication

Synchronous communication between threads has several defining characteristics:

• Temporal coupling: Sender and receiver must coordinate in time

• Blocking behavior: Sender typically waits until communication completes

• Immediate feedback: Results or acknowledgments are received directly

• Simplified reasoning: Sequential-like programming model

7.2 Synchronous Communication Mechanisms

7.2.1 Rendezvous

• Threads synchronize at a specific point in their execution

• Both sender and receiver block until the communication occurs

• Prominent in Ada’s task communication model

• Enables direct exchange of data with strong synchronization guarantees

7.2.2 Synchronous Message Passing

• Sender blocks until the message is received

• Provides guaranteed delivery and immediate feedback

• Examples: Synchronous operations on channels in Go, CSP model

7.2.3 Remote Procedure Call (RPC)

• Client invokes a procedure that executes in another thread or process

• Client blocks until the procedure completes and returns results

• Makes distributed communication appear like local procedure calls

• Forms the basis for many distributed system interactions

22

RUNTIMES FOR CONCURRENCY AND DISTRIBUTION 2024-2025

7.3 Implementing Synchronous Communication

Key components required for synchronous communication:

• Synchronization primitives: Mutexes, condition variables, semaphores

• Thread blocking mechanisms: Suspending and resuming threads

• Message buffering: Handling temporary timing differences

• Context management: Preserving state during blocking operations

7.4 Synchronous Communication in Programming Languages

7.4.1 Ada’s Rendezvous Mechanism

-- Server task (entry provider)

task Server is

entry Request(Data : in Item_Type; Result : out Result_Type);

end Server;

task body Server is

begin

loop

accept Request(Data : in Item_Type; Result : out Result_Type) do

-- Process the request and set Result

Result := Process(Data);

end Request;

end loop;

end Server;

-- Client task

task body Client is

Data : Item_Type;

Result : Result_Type;

begin

-- Prepare data

Data := Prepare_Data;

-- Make synchronous call - blocks until complete

Server.Request(Data , Result);

-- Use result

Use_Result(Result);

end Client;

7.4.2 Go’s Channel-Based Communication

// Synchronous communication with unbuffered channels

func server(requests chan int , responses chan int) {

for {

// Receive request (blocks until a value is sent)

req := <-requests

// Process request

result := process(req)

// Send response (blocks until received)

responses <- result

}

23

RUNTIMES FOR CONCURRENCY AND DISTRIBUTION 2024-2025

}

func client(requests chan int , responses chan int) {

// Send request (blocks until received)

requests <- prepareData ()

// Receive response (blocks until a value is sent)

result := <-responses

// Use result

useResult(result)

}

7.5 Advantages of Synchronous Communication

• Simplicity: Programming model similar to sequential code

• Determinism: Clear execution order and data flow

• Immediate feedback: Errors are reported directly to the caller

• Backpressure: Natural flow control when systems are overloaded

7.6 Limitations of Synchronous Communication

• Reduced concurrency: Blocking limits parallel execution

• Potential deadlocks: Circular dependencies can cause system standstill

• Vulnerability to failures: Caller is affected by receiver failures

• Performance concerns: Blocking can waste computational resources

• Limited scalability: May not perform well in highly distributed systems

7.7 Synchronous Communication in Distributed Systems

• Implemented through technologies like RPC, RESTful APIs, gRPC

• Adds challenges of network latency and failures

• Often requires timeout mechanisms to handle non-responsive peers

• May use network protocols that provide reliable delivery (e.g., TCP)

7.8 Key Insights

Key Insights

• Synchronous communication requires coordination between sender and receiver

• It simplifies reasoning about program behavior but limits concurrency

• Multiple implementation strategies exist with different trade-offs

• Synchronous communication can be challenging to scale in distributed systems

24

Chapter 8

Asynchronous Communication (The
Monitor)

8.1 Introduction to Asynchronous Communication

In contrast to synchronous communication, asynchronous communication decouples the timing
of sender and receiver operations:

• Sender and receiver do not need to be active simultaneously

• Communication operations typically don’t block the sender

• Intermediate storage holds messages until the receiver is ready

8.2 The Monitor Concept

Definition

A monitor is a synchronization construct that encapsulates shared data with procedures
that provide mutually exclusive access to that data, along with condition variables for
thread coordination.

8.2.1 Key Components of Monitors

• Encapsulated shared state: Private data accessible only through monitor procedures

• Mutual exclusion: Only one thread can execute within the monitor at a time

• Condition variables: Allow threads to wait for specific conditions

• Entry/exit protocol: Handles acquisition and release of the monitor lock

8.3 Monitor Implementation

8.3.1 Basic Structure

// Java -like pseudocode for a monitor

class BoundedBuffer {

private Object [] buffer;

private int count = 0, in = 0, out = 0;

private int size;

25

RUNTIMES FOR CONCURRENCY AND DISTRIBUTION 2024-2025

public BoundedBuffer(int size) {

this.size = size;

buffer = new Object[size];

}

// Monitor operations provide mutual exclusion

public synchronized void put(Object item) throws InterruptedException {

// Wait until space is available

while (count == size)

wait(); // Release monitor and wait

// Add item to buffer

buffer[in] = item;

in = (in + 1) % size;

count ++;

// Notify waiting consumers

notify ();

}

public synchronized Object get() throws InterruptedException {

// Wait until an item is available

while (count == 0)

wait(); // Release monitor and wait

// Remove item from buffer

Object item = buffer[out];

buffer[out] = null;

out = (out + 1) % size;

count --;

// Notify waiting producers

notify ();

return item;

}

}

8.3.2 Condition Variables

• Allow threads to wait for specific conditions

• Associated with the monitor and automatically release monitor lock

• Operations: wait, signal/notify, signalAll/notifyAll

• Different signaling semantics: signal-and-continue vs. signal-and-exit

8.4 Monitor Variations

8.4.1 Hoare Monitors

• When a thread signals a condition, it immediately transfers control to a waiting thread

• Signaler resumes only after the waiting thread exits the monitor or waits again

• Provides stronger guarantees about conditions when threads are awakened

8.4.2 Mesa Monitors

• When a thread signals a condition, waiting threads are moved to the ready queue

26

RUNTIMES FOR CONCURRENCY AND DISTRIBUTION 2024-2025

• Signaler continues execution; awakened threads compete for monitor entry

• Requires re-checking conditions in a loop (the ”wake and re-check” pattern)

• Most common implementation (Java, C#, and many other languages)

8.5 Ada’s Protected Objects

Ada’s interpretation of the monitor concept:

protected type Resource is

-- Entry operations (may involve queuing)

entry Acquire;

-- Protected procedures (modify the state)

procedure Release;

-- Protected functions (read -only access)

function Is_Available return Boolean;

private

Available : Boolean := True;

end Resource;

protected body Resource is

entry Acquire when Available is

begin

Available := False;

end Acquire;

procedure Release is

begin

Available := True;

end Release;

function Is_Available return Boolean is

begin

return Available;

end Is_Available;

end Resource;

8.6 Monitors vs. Other Synchronization Mechanisms

• Monitors vs. Semaphores: Monitors provide higher-level abstraction with encapsula-
tion

• Monitors vs. Message Passing: Monitors use shared memory rather than explicit
messages

• Monitors vs. Locks: Monitors combine data protection with condition synchronization

8.7 Asynchronous Benefits and Challenges

8.7.1 Benefits

• Increased concurrency: Threads spend less time blocked

• Improved responsiveness: Systems remain interactive during operations

• Better resource utilization: Computation can continue during I/O or waiting

27

RUNTIMES FOR CONCURRENCY AND DISTRIBUTION 2024-2025

• Enhanced scalability: Better suited for distributed environments

8.7.2 Challenges

• Complex programming model: More difficult to reason about execution flow

• Error handling: Errors may be discovered far from their cause

• Callback hell: Nested callbacks can lead to unreadable code

• State management: Maintaining context across asynchronous operations

8.8 Key Insights

Key Insights

• Monitors provide structured access to shared resources with built-in synchronization

• Asynchronous communication through monitors decouples sender and receiver tim-
ing

• Different monitor implementations offer various guarantees and semantics

• Monitor-based communication balances safety with performance in concurrent sys-
tems

28

Chapter 9

The Multiple Facets of
Synchronization

9.1 Dimensions of Synchronization

Synchronization in concurrent systems serves multiple purposes and can be categorized along
several dimensions:

9.1.1 Purpose of Synchronization

• Mutual exclusion: Preventing simultaneous access to shared resources

• Condition synchronization: Coordinating threads based on specific conditions

• Ordering: Ensuring operations occur in a specific sequence

• Barrier synchronization: Making threads wait at specific points until all arrive

9.1.2 Mechanism Characteristics

• Blocking vs. non-blocking: Whether threads wait by yielding the processor

• Pessimistic vs. optimistic: Preventing conflicts vs. detecting and resolving them

• Fine-grained vs. coarse-grained: Scope of resources protected

• Fair vs. unfair: Policies for selecting which waiting thread proceeds

9.2 Ada’s Protected Objects: A Comprehensive Approach

Ada’s protected objects provide a particularly rich synchronization model:

9.2.1 Key Capabilities

• Integrated mutual exclusion: All operations are automatically protected

• Differentiated access modes: Read-only vs. read-write operations

• Condition-based entry: Built-in guards on entry operations

• Priority inheritance: Prevents priority inversion problems

29

RUNTIMES FOR CONCURRENCY AND DISTRIBUTION 2024-2025

9.2.2 Protected Object Types

protected type Resource_Manager(Max_Resources : Positive) is

-- Entry operations (may queue)

entry Allocate(Amount : Positive; ID : out Resource_ID);

entry Deallocate(ID : Resource_ID);

-- Protected procedures (modify state , mutually exclusive)

procedure Initialize;

-- Protected functions (read -only , allow concurrent readers)

function Available_Resources return Natural;

function Is_Allocated(ID : Resource_ID) return Boolean;

private

Available : Natural := Max_Resources;

-- Other implementation details

end Resource_Manager;

9.3 Advanced Synchronization Patterns

9.3.1 Read-Write Locks

• Allow multiple concurrent readers but exclusive writers

• Improve throughput for read-heavy workloads

• Various policies for reader vs. writer preference

9.3.2 Priority Inheritance

• Addresses the problem of priority inversion

• Lower-priority thread inherits priority of higher-priority waiting thread

• Ensures critical sections are executed at appropriate priority

9.3.3 Non-Blocking Synchronization

• Atomic operations and compare-and-swap primitives

• Lock-free and wait-free algorithms

• Eliminates deadlocks and reduces contention

9.4 Synchronization Problems and Solutions

9.4.1 Deadlock

• Definition: Circular waiting where each thread holds resources needed by others

• Prevention: Resource ordering, single resource allocation, deadlock detection

• Recovery: Thread termination, resource preemption

9.4.2 Starvation

• Definition: Thread never gets resources it needs despite being eligible

• Prevention: Fair scheduling, aging mechanisms, resource reservation

30

RUNTIMES FOR CONCURRENCY AND DISTRIBUTION 2024-2025

9.4.3 Priority Inversion

• Definition: Lower-priority thread blocks higher-priority thread indirectly

• Solutions: Priority inheritance, priority ceiling protocol

9.5 Case Study: The Mars Pathfinder Incident

Historical Note

The Mars Pathfinder mission in 1997 experienced system resets caused by a priority
inversion problem. A low-priority task held a mutex needed by a high-priority task,
while a medium-priority task prevented the low-priority task from completing. This real-
world example illustrates the critical importance of proper synchronization in concurrent
systems.

9.6 Synchronization in Distributed Contexts

How synchronization extends to distributed systems:

• Challenges: Lack of shared memory, network latency, partial failures

• Distributed locks: Consensus protocols, distributed mutexes

• Time synchronization: Logical clocks, vector clocks

• Consistency models: Strong vs. eventual consistency

9.7 Key Insights

Key Insights

• Synchronization encompasses multiple facets beyond simple mutual exclusion

• Advanced synchronization mechanisms balance safety with performance

• Well-designed synchronization prevents problems like deadlock and starvation

• Proper synchronization is crucial for both concurrent and distributed systems

31

Chapter 10

Back to Distribution

10.1 Revisiting Distribution Fundamentals

Having explored concurrency in depth, we can now return to distribution with a richer under-
standing:

• Distribution is fundamentally built on concurrent execution

• Concurrency mechanisms provide the foundation for distributed coordination

• Distribution extends concurrency challenges across network boundaries

10.2 The Role of Runtimes in Distributed Systems

• Layered architecture: Multiple levels of runtime support

• Increasing complexity: From local concurrency to distributed coordination

• Transparency: Hiding distribution details from application logic

• Failure handling: Managing partial failures across distributed components

10.3 Distributed System Architecture

10.3.1 Logical Architecture

• Component model: How functionality is divided into distributable units

• Communication patterns: Request-response, pub-sub, streaming

• State management: Centralized vs. distributed, replication strategies

• Consistency models: Strong, eventual, causal consistency

10.3.2 Physical Architecture

• Deployment models: On-premises, cloud, hybrid, edge

• Network topology: Hierarchical, mesh, peer-to-peer

• Resource allocation: Static vs. dynamic, auto-scaling

32

RUNTIMES FOR CONCURRENCY AND DISTRIBUTION 2024-2025

10.4 Distribution Transparency

Types of transparency that distributed runtimes aim to provide:

• Access transparency: Local and remote resources accessed with the same operations

• Location transparency: Services can be used without knowing their physical location

• Concurrency transparency: Multiple users can share resources without interference

• Replication transparency: Multiple copies maintained without user knowledge

• Failure transparency: Failures are hidden or automatically recovered from

• Migration transparency: Resources can move without affecting operations

• Performance transparency: System can be reconfigured for performance without ap-
plication changes

• Scaling transparency: System can expand in scale without affecting structure

10.5 Challenges in Distributed Systems

10.5.1 The CAP Theorem

Definition

The CAP theorem states that a distributed system cannot simultaneously provide all
three of the following guarantees:

• Consistency: All nodes see the same data at the same time

• Availability: Every request receives a response

• Partition tolerance: The system continues to operate despite network failures

In practice, partition tolerance is necessary for distributed systems, forcing a trade-off
between consistency and availability.

10.5.2 The FLP Impossibility Result

• Proves that no distributed consensus algorithm can guarantee termination in an asyn-
chronous system with even one faulty process

• Has profound implications for distributed algorithms

• Leads to probabilistic approaches to consensus

10.5.3 Other Challenges

• Network latency: Time delay in communication affecting performance

• Partial failures: Some components fail while others continue operating

• Clock synchronization: Difficulty establishing a consistent time view

• Security: Increased attack surface in distributed environments

33

RUNTIMES FOR CONCURRENCY AND DISTRIBUTION 2024-2025

10.6 Distributed Runtime Components

10.6.1 Communication Middleware

• Remote Procedure Call (RPC) frameworks: gRPC, Java RMI

• Message queues: RabbitMQ, Apache Kafka

• Pub/sub systems: MQTT, NATS

• API gateways: Managing service access and protocols

10.6.2 Service Discovery

• Registry-based: Services register with a central registry

• Client-side discovery: Clients query registry and choose services

• Server-side discovery: Load balancer routes requests to services

• DNS-based: Using DNS for service lookup

10.6.3 Orchestration and Management

• Container orchestration: Kubernetes, Docker Swarm

• Service mesh: Istio, Linkerd

• Monitoring and telemetry: Prometheus, OpenTelemetry

• Configuration management: Centralized vs. distributed

10.7 Key Insights

Key Insights

• Distribution builds on concurrency but introduces additional complexity

• Distributed runtimes provide multiple layers of abstraction and transparency

• Fundamental theoretical limits constrain what distributed systems can achieve

• Modern distributed systems rely on sophisticated runtime support for reliability
and performance

34

Chapter 11

Distributed Inter-Process
Communication

11.1 The Challenge of Remote Communication

Remote communication between distributed components differs fundamentally from local com-
munication:

• Components exist in different address spaces

• Communication crosses network boundaries

• Network introduces latency, bandwidth constraints, and failure modes

• No shared memory for direct data access

11.2 Network Protocol Fundamentals

11.2.1 Protocol Layers

• Physical layer: Hardware transmission of bits

• Data link layer: Reliable transmission between adjacent nodes

• Network layer: Routing across networks (IP)

• Transport layer: End-to-end communication (TCP, UDP)

• Application layer: Application-specific protocols (HTTP, SMTP, etc.)

11.2.2 Connection-Oriented vs. Connectionless

• Connection-oriented (TCP): Establishes session, ensures reliability, orders messages

• Connectionless (UDP): No session, best-effort delivery, lower overhead

11.3 Remote Procedure Call (RPC)

11.3.1 RPC Concept

• Makes remote service invocation appear like local procedure calls

• Hides the complexity of network communication

• Provides location transparency to applications

35

RUNTIMES FOR CONCURRENCY AND DISTRIBUTION 2024-2025

11.3.2 RPC Components

• Client stub: Marshals parameters, initiates remote call

• Server skeleton: Unmarshals parameters, invokes service, returns results

• Interface Definition Language (IDL): Specifies service interfaces

• Name server: Helps clients locate servers

11.3.3 RPC Operation

1. Client calls client stub (appears as normal procedure call)

2. Client stub marshals parameters into message

3. Client runtime sends message to server

4. Server runtime receives message, passes to server skeleton

5. Server skeleton unmarshals parameters, calls service implementation

6. Service executes, returns results to skeleton

7. Skeleton marshals results, returns to client

8. Client stub unmarshals results, returns to client

11.3.4 RPC Challenges

• Parameter passing: Handling complex data types, references

• Error handling: Network failures, server crashes

• Idempotence: Ensuring operations can be safely retried

• Performance: Overhead of marshaling, network latency

11.4 Message-Oriented Middleware (MOM)

11.4.1 Characteristics

• Asynchronous communication model

• Message queues decouple senders from receivers

• Supports various interaction patterns (point-to-point, pub/sub)

• Provides message persistence and delivery guarantees

11.4.2 MOM Components

• Message queues: Store messages until consumed

• Message brokers: Route messages between producers and consumers

• Topics/exchanges: Enable publish-subscribe patterns

• Message acknowledgments: Ensure delivery confirmation

36

RUNTIMES FOR CONCURRENCY AND DISTRIBUTION 2024-2025

11.4.3 Delivery Semantics

• At-most-once: Message may be lost but never delivered twice

• At-least-once: Message is guaranteed delivery but may be duplicated

• Exactly-once: Message is delivered once and only once (most challenging)

11.5 Web Services and RESTful Communication

11.5.1 Web Services

• SOAP: XML-based protocol with formal interface definitions

• WSDL: Web Services Description Language for interface specification

• UDDI: Universal Description, Discovery, and Integration for service registry

11.5.2 REST (Representational State Transfer)

• Architectural style using standard HTTP methods

• Resources identified by URIs

• Stateless communication model

• Multiple representation formats (JSON, XML, etc.)

• Hypermedia as the engine of application state (HATEOAS)

11.6 Emerging Communication Patterns

11.6.1 GraphQL

• Query language for APIs

• Clients specify exactly what data they need

• Single endpoint for multiple resources

• Reduces over-fetching and under-fetching of data

11.6.2 gRPC

• High-performance RPC framework

• Uses Protocol Buffers for interface definition and serialization

• Supports streaming (unary, server, client, and bidirectional)

• Built on HTTP/2 for multiplexing and header compression

11.6.3 WebSockets

• Full-duplex communication channels over TCP

• Enables real-time, bidirectional communication

• Maintains persistent connection after initial handshake

• Lower overhead than repeated HTTP requests

37

RUNTIMES FOR CONCURRENCY AND DISTRIBUTION 2024-2025

11.7 Serialization and Data Formats

11.7.1 Data Serialization

• Process of converting in-memory structures to transmittable format

• Must handle different data types, object references, inheritance

• Performance considerations for encoding/decoding

11.7.2 Common Data Formats

• JSON: Human-readable, widely supported, schema-optional

• XML: Extensible, self-descriptive, schema support

• Protocol Buffers: Compact binary format, schema-required, efficient

• Avro: Schema-based serialization with dynamic typing

• MessagePack: Compact binary format similar to JSON

11.8 Key Insights

Key Insights

• Distributed IPC requires specialized mechanisms to handle network constraints

• Different communication patterns serve different application needs

• The choice of serialization format impacts performance and interoperability

• Modern distributed systems often combine multiple communication paradigms

38

Chapter 12

Distributed Concurrency

12.1 The Convergence of Distribution and Concurrency

Distributed systems inherently require concurrency at multiple levels:

• Inter-node concurrency: Multiple nodes operating simultaneously

• Intra-node concurrency: Multiple threads/processes within each node

• Request concurrency: Handling multiple client requests simultaneously

• Data concurrency: Managing concurrent access to distributed data

12.2 Server-Side Scalability

12.2.1 Scalability Dimensions

• Vertical scaling (scale up): Adding more resources to existing nodes

• Horizontal scaling (scale out): Adding more nodes to the system

• Functional partitioning: Dividing the system by functionality

• Data partitioning: Dividing data across multiple nodes

12.2.2 Server Architectures for Scalability

Thread-per-Request Model

• Creates a new thread for each incoming request

• Simple programming model

• Limited scalability due to thread creation overhead

• Resource consumption grows with concurrent requests

Thread Pool Model

• Maintains a pool of worker threads

• Reuses threads for multiple requests

• Limits maximum resource consumption

• Queues requests when all threads are busy

39

RUNTIMES FOR CONCURRENCY AND DISTRIBUTION 2024-2025

Event-Driven Model

• Single-threaded event loop processes requests asynchronously

• Non-blocking I/O operations

• Callbacks or promises/futures for handling completion

• Efficient use of resources for I/O-bound workloads

• Examples: Node.js, Twisted, nginx

Reactor Pattern

• Demultiplexes and dispatches requests to appropriate handlers

• Uses efficient I/O polling mechanisms (select, epoll, kqueue)

• Single-threaded or multi-threaded variations

Proactor Pattern

• Initiates asynchronous operations and handles their completion

• Completion handlers process results when operations finish

• More complex than reactor but potentially more efficient

12.3 Concurrency Control in Distributed Systems

12.3.1 Optimistic Concurrency Control

• Assumes conflicts are rare

• Allows operations to proceed without locking

• Validates changes before committing

• Aborts and retries if conflicts are detected

12.3.2 Pessimistic Concurrency Control

• Assumes conflicts are likely

• Acquires locks before operations

• Prevents conflicts but reduces concurrency

• Requires distributed lock management

12.3.3 Distributed Transactions

• Ensure ACID properties across multiple nodes

• Two-Phase Commit (2PC) protocol:

– Preparation phase: All participants vote on transaction

– Commit/abort phase: Coordinator decides based on votes

• Challenges: Blocking, coordinator failures, performance impact

40

RUNTIMES FOR CONCURRENCY AND DISTRIBUTION 2024-2025

12.4 Balancing Scalability and Consistency

12.4.1 Consistency Models

• Strong consistency: All reads reflect the most recent write

• Eventual consistency: System will become consistent over time

• Causal consistency: Causally related operations seen in same order by all nodes

• Session consistency: Client’s operations seen in correct order within session

12.4.2 Consistency vs. Performance Trade-offs

• Stronger consistency typically means lower performance

• Weaker consistency enables higher scalability and availability

• Application requirements should determine appropriate consistency level

12.5 Distributed Concurrency Patterns

12.5.1 Sharding/Partitioning

• Divides data across multiple nodes

• Reduces contention and increases throughput

• Enables parallel processing of independent data

• Challenges: Cross-shard operations, rebalancing, hot spots

12.5.2 Command Query Responsibility Segregation (CQRS)

• Separates read (query) operations from write (command) operations

• Can use different models and storage for reads vs. writes

• Allows independent scaling of read and write sides

• Often combined with event sourcing

12.5.3 Event Sourcing

• Stores changes as a sequence of events

• Current state derived by replaying events

• Provides complete audit trail and temporal queries

• Enables event-driven architecture and integration

41

RUNTIMES FOR CONCURRENCY AND DISTRIBUTION 2024-2025

12.6 Distributed Concurrency Technologies

12.6.1 Actor Model

• Encapsulates state within actors that communicate via messages

• Natural fit for distributed systems

• Location transparency (local and remote actors treated the same)

• Examples: Erlang/OTP, Akka

12.6.2 Conflict-Free Replicated Data Types (CRDTs)

• Data structures that can be replicated across multiple nodes

• Automatically resolve conflicts without coordination

• Support eventual consistency with strong convergence guarantees

• Examples: G-sets, LWW-registers, OR-sets

12.7 Key Insights

Key Insights

• Distributed systems require effective concurrency management at multiple levels

• Server architectures must balance resource utilization with scalability

• The choice of concurrency control mechanism affects consistency and performance

• Modern distributed systems often use specialized patterns to manage concurrency

42

Chapter 13

Distributed Synchronization

13.1 The Challenge of Distributed Agreement

Achieving agreement among distributed nodes is fundamentally challenging due to:

• Unreliable networks with variable latency

• Independent node failures

• Lack of global clock or shared memory

• Partial network partitions

13.2 Clock Synchronization

13.2.1 Physical Clock Synchronization

• Network Time Protocol (NTP)

• Precision Time Protocol (PTP)

• Challenges: Network delays, clock drift, leap seconds

• Limitations: Cannot achieve perfect synchronization

13.2.2 Logical Clocks

• Lamport clocks: Scalar timestamps establishing a partial ordering

• Vector clocks: Vector timestamps capturing causal relationships

• Matrix clocks: Track knowledge about other nodes’ knowledge

• Hybrid logical clocks: Combine physical and logical time

43

RUNTIMES FOR CONCURRENCY AND DISTRIBUTION 2024-2025

13.3 Distributed Consensus

13.3.1 The Consensus Problem

Definition

The distributed consensus problem requires agreement among distributed nodes on a
single value or sequence of values, ensuring:

• Agreement: All correct nodes decide on the same value

• Validity: The value decided was proposed by some node

• Termination: All correct nodes eventually decide

13.3.2 Consensus Algorithms

Paxos

• Classic algorithm for distributed consensus

• Roles: proposers, acceptors, learners

• Two-phase protocol: prepare and accept

• Guarantees safety but not liveness under certain conditions

• Complex to understand and implement correctly

Raft

• Designed for understandability

• Leader-based approach with terms

• Three subproblems: leader election, log replication, safety

• Strong leader principle simplifies algorithm

Byzantine Fault Tolerance (BFT)

• Handles malicious (Byzantine) failures

• Requires more than two-thirds of nodes to be honest

• Higher communication overhead than non-Byzantine algorithms

• Examples: PBFT, Tendermint, HotStuff

13.4 State Machine Replication

• Implements replicated services using consensus on operation sequence

• Each node applies the same operations in the same order

• Deterministic operations ensure consistent state

• Provides fault tolerance and high availability

44

RUNTIMES FOR CONCURRENCY AND DISTRIBUTION 2024-2025

13.5 Distributed Mutual Exclusion

13.5.1 Token-Based Algorithms

• Single token circulates among nodes

• Node holding token can enter critical section

• Examples: Raymond’s algorithm, Suzuki-Kasami algorithm

13.5.2 Permission-Based Algorithms

• Node requests permission from other nodes to enter critical section

• Examples: Ricart-Agrawala algorithm, Maekawa’s algorithm

13.5.3 Quorum-Based Algorithms

• Node must acquire locks from a quorum of nodes

• Overlapping quorums ensure mutual exclusion

• Examples: Majority quorum, tree quorum

13.6 Distributed Deadlock Detection

13.6.1 Centralized Detection

• Single coordinator collects wait-for information

• Periodically checks for cycles in global wait-for graph

• Single point of failure

13.6.2 Distributed Detection

• Nodes cooperate to detect deadlocks

• Edge-chasing algorithms propagate dependency information

• Challenges: Phantom deadlocks, concurrent detection

13.7 Distributed Termination Detection

• Determining when all distributed computation has completed

• Dijkstra-Scholten algorithm for diffusing computations

• Credit-recovery schemes

• Wave algorithms

45

RUNTIMES FOR CONCURRENCY AND DISTRIBUTION 2024-2025

13.8 Leader Election

• Selecting a unique coordinator among distributed nodes

• Ring-based algorithms (Chang-Roberts, Franklin)

• Bully algorithm

• Challenges: Network partitions, simultaneous failures

13.9 Key Insights

Key Insights

• Distributed synchronization is fundamentally more challenging than local synchro-
nization

• Consensus algorithms provide the foundation for reliable distributed systems

• Different synchronization problems require specialized distributed algorithms

• Trade-offs exist between consistency guarantees and performance

46

Chapter 14

Enter the Cloud

14.1 The Evolution of Cloud Computing

14.1.1 Historical Context

• Mainframe era: Centralized computing with time-sharing

• Client-server era: Distributed computing with specialized servers

• Grid computing: Sharing resources across organizations

• Utility computing: Computing resources as metered services

• Cloud computing: On-demand, elastic resources with self-service capabilities

14.1.2 Visionaries and Early Adopters

• John McCarthy’s utility computing vision (1961)

• Amazon’s infrastructure transformation (early 2000s)

• Amazon Web Services launch (2006)

• Google App Engine (2008)

• Microsoft Azure (2010)

14.2 Cloud Computing Characteristics

14.2.1 Essential Characteristics (NIST Definition)

• On-demand self-service: Resources provisioned without human interaction

• Broad network access: Capabilities available over the network

• Resource pooling: Provider resources serve multiple consumers

• Rapid elasticity: Capabilities can be scaled quickly

• Measured service: Resource usage is monitored, controlled, and reported

47

RUNTIMES FOR CONCURRENCY AND DISTRIBUTION 2024-2025

14.2.2 Service Models

• Infrastructure as a Service (IaaS): Virtual machines, storage, networks

• Platform as a Service (PaaS): Application platforms, middleware, development tools

• Software as a Service (SaaS): Complete applications delivered over the network

• Function as a Service (FaaS): Serverless computing executing individual functions

14.2.3 Deployment Models

• Public cloud: Services available to general public

• Private cloud: Infrastructure operated for a single organization

• Community cloud: Infrastructure shared by several organizations

• Hybrid cloud: Composition of two or more distinct cloud infrastructures

• Multi-cloud: Using services from multiple cloud providers

14.3 Cloud Infrastructure Architecture

14.3.1 Compute Virtualization

• Hypervisors: KVM, Xen, VMware ESXi, Hyper-V

• Containers: Docker, containerd, CRI-O

• Serverless: Event-driven execution environments

14.3.2 Storage Systems

• Object storage: Amazon S3, Google Cloud Storage, Azure Blob Storage

• Block storage: Amazon EBS, Google Persistent Disk, Azure Disk Storage

• File storage: Amazon EFS, Google Filestore, Azure Files

• Database services: RDBMSs, NoSQL, NewSQL, time-series, graph

14.3.3 Networking

• Virtual networks: VPCs, subnets, security groups

• Load balancing: Application and network load balancers

• Content delivery: CDNs for global distribution

• DNS services: Route 53, Cloud DNS

48

RUNTIMES FOR CONCURRENCY AND DISTRIBUTION 2024-2025

14.4 Cloud Design Patterns

14.4.1 Scalability Patterns

• Auto-scaling: Automatically adjusting resources based on demand

• Queue-based load leveling: Smoothing workloads with message queues

• Static content hosting: Offloading static content to specialized storage

• Sharding: Horizontally partitioning data across multiple databases

14.4.2 Resilience Patterns

• Circuit breaker: Preventing cascading failures

• Bulkhead: Isolating failures to parts of the system

• Retry with exponential backoff : Handling transient failures

• Chaos engineering: Proactively testing system resilience

14.4.3 Data Management Patterns

• CQRS: Separating read and write operations

• Event sourcing: Storing state changes as event sequences

• Materialized view: Pre-computing query results

• Polyglot persistence: Using multiple data storage technologies

14.5 Cloud-Native Application Architecture

14.5.1 Microservices

• Small, autonomous services focused on specific business capabilities

• Independent deployment and scaling

• Technology diversity (polyglot programming)

• Challenges: Distributed system complexity, service coordination

14.5.2 Containers and Orchestration

• Containers: Lightweight, consistent runtime environments

• Kubernetes: Container orchestration platform

• Service mesh: Istio, Linkerd for service-to-service communication

• Serverless: Event-driven, auto-scaling compute without infrastructure management

49

RUNTIMES FOR CONCURRENCY AND DISTRIBUTION 2024-2025

14.5.3 DevOps and Continuous Delivery

• Infrastructure as Code: Terraform, CloudFormation

• CI/CD pipelines: Automated testing and deployment

• Observability: Metrics, logging, tracing

• GitOps: Git-based infrastructure and application deployment

14.6 Challenges in Cloud Computing

14.6.1 Technical Challenges

• Data gravity: Difficulty moving large datasets

• Distributed system fallacies: Network reliability, latency, etc.

• Multi-cloud complexity: Managing across cloud providers

• Security and compliance: Data protection, regulatory requirements

14.6.2 Business Challenges

• Cost management: Understanding and controlling cloud spending

• Vendor lock-in: Dependency on specific cloud provider services

• Skills gap: Finding expertise in cloud technologies

• Organizational change: Adapting processes for cloud-native operations

14.7 Future Trends

• Edge computing: Processing closer to data sources

• Serverless evolution: Expanding beyond functions to more complex workloads

• AI/ML integration: Embedding intelligence in cloud services

• Multi-cloud and hybrid clouds: Standardization and interoperability

• Sustainable computing: Energy-efficient and environmentally conscious operations

14.8 Key Insights

Key Insights

• Cloud computing represents the culmination of distributed computing evolution

• Cloud platforms rely on sophisticated runtimes for virtualization and orchestration

• Cloud-native design requires rethinking application architecture for distributed en-
vironments

• Understanding concurrency and distribution fundamentals is crucial for effective
cloud computing

50

Bibliography

[1] Tanenbaum, A. S., & Van Steen, M. (2017). Distributed Systems: Principles and Paradigms
(3rd Edition). CreateSpace Independent Publishing Platform.

[2] Coulouris, G., Dollimore, J., Kindberg, T., & Blair, G. (2011). Distributed Systems: Con-
cepts and Design (5th Edition). Addison-Wesley.

[3] Burns, B. (2018). Designing Distributed Systems: Patterns and Paradigms for Scalable,
Reliable Services. O’Reilly Media.

[4] Kleppmann, M. (2017). Designing Data-Intensive Applications. O’Reilly Media.

[5] Ongaro, D., & Ousterhout, J. (2014). In Search of an Understandable Consensus Algorithm.
In USENIX Annual Technical Conference (pp. 305-319).

[6] Lamport, L. (1998). The Part-Time Parliament. ACM Transactions on Computer Systems
(TOCS), 16(2), 133-169.

[7] Van Roy, P., & Haridi, S. (2007). Concepts, Techniques, and Models of Computer Program-
ming. MIT Press.

[8] Fielding, R. T. (2000). Architectural Styles and the Design of Network-based Software Ar-
chitectures. Doctoral dissertation, University of California, Irvine.

[9] Mell, P., & Grance, T. (2011). The NIST Definition of Cloud Computing. National Institute
of Standards and Technology.

51

	The Notion of Run-time Support
	Introduction to Programming Abstractions
	Procedures as Abstractions
	The Abstraction Gap
	Levels of Abstraction
	Key Concepts

	Multiprogramming
	The Run-time Environment
	Components of the Run-time Environment
	Operating System
	Language-Specific Run-time Support

	The Program Abstraction
	Multiprogramming Implementation
	Process Management
	Memory Management
	Resource Management

	Key Insights

	Virtualization
	Introduction to Virtualization
	From Abstraction to Virtualization
	Types of Virtualization
	Platform Virtualization
	Resource Virtualization

	Hypervisors/Virtual Machine Monitors
	Benefits of Virtualization
	Virtualization Techniques
	Trap-and-Emulate
	Binary Translation

	Challenges in Virtualization
	Virtualization in Modern Platforms

	Distribution and Scalability
	Introduction to Distribution
	Relationship Between Concurrency and Distribution
	Fundamental Concepts of Distribution
	Distributed System Definition
	Key Characteristics

	Scalability in Distributed Systems
	Dimensions of Scalability
	Scalability Challenges

	Distribution Models
	Client-Server Model
	Peer-to-Peer Model
	Hybrid Models

	Runtime Support for Distribution
	Key Insights

	Models of Concurrency
	Design Challenges for Concurrency Models
	The Language Designer's Perspective
	Units of Concurrent Execution
	Syntactic Representation
	Execution Model

	Shared Memory vs. Message Passing
	Shared Memory Model
	Message Passing Model

	Specific Language Approaches to Concurrency
	Java's Concurrency Model
	Go's Concurrency Model
	Ada's Concurrency Model
	Erlang's Concurrency Model

	Evaluating Concurrency Models
	Key Insights

	Communication Among Threads
	The Necessity of Communication
	Challenges in Inter-Thread Communication
	Communication Models
	Shared Memory Communication
	Message-Based Communication

	Synchronization Primitives
	Mutual Exclusion (Mutex)
	Semaphores
	Condition Variables
	Barriers

	Communication Patterns
	Producer-Consumer
	Readers-Writers
	Dining Philosophers

	Communication and Distribution
	Key Insights

	Synchronous Communication
	Characteristics of Synchronous Communication
	Synchronous Communication Mechanisms
	Rendezvous
	Synchronous Message Passing
	Remote Procedure Call (RPC)

	Implementing Synchronous Communication
	Synchronous Communication in Programming Languages
	Ada's Rendezvous Mechanism
	Go's Channel-Based Communication

	Advantages of Synchronous Communication
	Limitations of Synchronous Communication
	Synchronous Communication in Distributed Systems
	Key Insights

	Asynchronous Communication (The Monitor)
	Introduction to Asynchronous Communication
	The Monitor Concept
	Key Components of Monitors

	Monitor Implementation
	Basic Structure
	Condition Variables

	Monitor Variations
	Hoare Monitors
	Mesa Monitors

	Ada's Protected Objects
	Monitors vs. Other Synchronization Mechanisms
	Asynchronous Benefits and Challenges
	Benefits
	Challenges

	Key Insights

	The Multiple Facets of Synchronization
	Dimensions of Synchronization
	Purpose of Synchronization
	Mechanism Characteristics

	Ada's Protected Objects: A Comprehensive Approach
	Key Capabilities
	Protected Object Types

	Advanced Synchronization Patterns
	Read-Write Locks
	Priority Inheritance
	Non-Blocking Synchronization

	Synchronization Problems and Solutions
	Deadlock
	Starvation
	Priority Inversion

	Case Study: The Mars Pathfinder Incident
	Synchronization in Distributed Contexts
	Key Insights

	Back to Distribution
	Revisiting Distribution Fundamentals
	The Role of Runtimes in Distributed Systems
	Distributed System Architecture
	Logical Architecture
	Physical Architecture

	Distribution Transparency
	Challenges in Distributed Systems
	The CAP Theorem
	The FLP Impossibility Result
	Other Challenges

	Distributed Runtime Components
	Communication Middleware
	Service Discovery
	Orchestration and Management

	Key Insights

	Distributed Inter-Process Communication
	The Challenge of Remote Communication
	Network Protocol Fundamentals
	Protocol Layers
	Connection-Oriented vs. Connectionless

	Remote Procedure Call (RPC)
	RPC Concept
	RPC Components
	RPC Operation
	RPC Challenges

	Message-Oriented Middleware (MOM)
	Characteristics
	MOM Components
	Delivery Semantics

	Web Services and RESTful Communication
	Web Services
	REST (Representational State Transfer)

	Emerging Communication Patterns
	GraphQL
	gRPC
	WebSockets

	Serialization and Data Formats
	Data Serialization
	Common Data Formats

	Key Insights

	Distributed Concurrency
	The Convergence of Distribution and Concurrency
	Server-Side Scalability
	Scalability Dimensions
	Server Architectures for Scalability

	Concurrency Control in Distributed Systems
	Optimistic Concurrency Control
	Pessimistic Concurrency Control
	Distributed Transactions

	Balancing Scalability and Consistency
	Consistency Models
	Consistency vs. Performance Trade-offs

	Distributed Concurrency Patterns
	Sharding/Partitioning
	Command Query Responsibility Segregation (CQRS)
	Event Sourcing

	Distributed Concurrency Technologies
	Actor Model
	Conflict-Free Replicated Data Types (CRDTs)

	Key Insights

	Distributed Synchronization
	The Challenge of Distributed Agreement
	Clock Synchronization
	Physical Clock Synchronization
	Logical Clocks

	Distributed Consensus
	The Consensus Problem
	Consensus Algorithms

	State Machine Replication
	Distributed Mutual Exclusion
	Token-Based Algorithms
	Permission-Based Algorithms
	Quorum-Based Algorithms

	Distributed Deadlock Detection
	Centralized Detection
	Distributed Detection

	Distributed Termination Detection
	Leader Election
	Key Insights

	Enter the Cloud
	The Evolution of Cloud Computing
	Historical Context
	Visionaries and Early Adopters

	Cloud Computing Characteristics
	Essential Characteristics (NIST Definition)
	Service Models
	Deployment Models

	Cloud Infrastructure Architecture
	Compute Virtualization
	Storage Systems
	Networking

	Cloud Design Patterns
	Scalability Patterns
	Resilience Patterns
	Data Management Patterns

	Cloud-Native Application Architecture
	Microservices
	Containers and Orchestration
	DevOps and Continuous Delivery

	Challenges in Cloud Computing
	Technical Challenges
	Business Challenges

	Future Trends
	Key Insights

